Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38139774

RESUMEN

Cervical cancer is a malignant neoplastic disease, mainly associated to HPV infection, with high mortality rates. Among natural products, iridoids have shown different biological activities, including cytotoxic and antitumor effects, in different cancer cell types. Geniposide and its aglycone Genipin have been assessed against different types of cancer. In this work, both iridoids were evaluated against HeLa and three different cervical cancer cell lines. Furthermore, we performed a SAR analysis incorporating 13 iridoids with a high structural similarity to Geniposide and Genipin, also tested in the HeLa cell line and at the same treatment time. Derived from this analysis, we found that the dipole moment (magnitude and direction) is key for their cytotoxic activity in the HeLa cell line. Then, we proceeded to the ligand-based design of new Genipin derivatives through a QSAR model (R2 = 87.95 and Q2 = 62.33) that incorporates different quantum mechanic molecular descriptor types (ρ, ΔPSA, ∆Polarizability2, and logS). Derived from the ligand-based design, we observed that the presence of an aldehyde or a hydroxymethyl in C4, hydroxyls in C1, C6, and C8, and the lack of the double bond in C7-C8 increased the predicted biological activity of the iridoids. Finally, ten simple iridoids (D9, D107, D35, D36, D55, D56, D58, D60, D61, and D62) are proposed as potential cytotoxic agents against the HeLa cell line based on their predicted IC50 value and electrostatic features.

2.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38004444

RESUMEN

Among broad-spectrum anticancer agents, paclitaxel (PTX) has proven to be one of the most effective against solid tumors for which more specific treatments are lacking. However, drawbacks such as neurotoxicity and the development of resistance reduce its therapeutic efficacy. Therefore, there is a need for compounds able to improve its activity by synergizing with it or potentiating its effect, thus reducing the doses required. We investigated the interaction between PTX and tannins, other compounds with anticancer activity known to act as repressors of several proteins involved in oncological pathways. We found that both tannic acid (TA) and ethyl gallate (EG) strongly potentiate the toxicity of PTX in Hep3B cells, suggesting their utility in combination therapy. We also found that AT and EG promote tubulin polymerization and enhance the effect of PTX on tubulin, suggesting a direct interaction with tubulin. Biochemical experiments confirmed that TA, but not EG, binds tubulin and potentiates the apparent binding affinity of PTX for the tubulin binding site. Furthermore, the molecular docking of TA to tubulin suggests that TA can bind to two different sites on tubulin, one at the PTX site and the second at the interface of α and ß-tubulin (cluster 2). The binding of TA to cluster 2 could explain the overstabilization in the tubulin + PTX combinatorial assay. Finally, we found that EG can inhibit PTX-induced expression of pAkt and pERK defensive protein kinases, which are involved in resistance to PXT, by limiting cell death (apoptosis) and favoring cell proliferation and cell cycle progression. Our results support that tannic acid and ethyl gallate are potential chemotherapeutic agents due to their potentiating effect on paclitaxel.

3.
Langmuir ; 39(32): 11213-11223, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37526362

RESUMEN

Plasma polymerized pyrrole/iodine (PPPy/I) microparticles and bovine serum albumin (BSA) protein have shown interesting results in experimental models for the treatment of traumatic spinal cord injury. By studying the interaction between BSA and PPPy/I by a quartz crystal microbalance (QCM) and docking, we obtained important results to elucidate possible cellular interactions and promote the use of these polymers as biomaterials. These measurements were also used to characterize the adsorption process using an equilibrium constant. In addition, atomic force microscopy (AFM) was used to obtain images of the QCM surface sensors before and after BSA adsorption. Furthermore, we carried out molecular dynamics simulations and molecular docking to characterize the molecular recognition between BSA and the previously reported PPPy/I structure. For this study, we used two combinatorial models that have not been tested. Thus, we could determine the electrostatic (ΔGele) and nonelectrostatic (ΔGnonelec) components of the free binding energy (ΔGb). We demonstrated that BSA is adsorbed on PPPy/I with an adsorption constant of K = 24.35 µ-1 indicating high affinity. This observation combined with molecular docking and binding free energy calculations showed that the interaction between BSA and both combinatorial models of the PPPy structure is spontaneous.


Asunto(s)
Materiales Biocompatibles , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Materiales Biocompatibles/farmacología , Simulación del Acoplamiento Molecular , Tecnicas de Microbalanza del Cristal de Cuarzo , Pirroles/química , Adsorción , Propiedades de Superficie
4.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37631063

RESUMEN

Bacteria resistance to antibiotics is a concerning global health problem; in this context, methicillin-resistant Staphylococcus aureus (MRSA) is considered as a high priority by the World Health Organization. Furthermore, patients with a positive result for COVID-19 received early antibiotic treatment, a fact that potentially encourages the increase in antibiotic resistance. Therefore, there is an urgency to develop new drugs with molecular mechanisms different from those of the actual treatments. In this context, enzymes from the shikimate pathway, a route absent in humans, such as dehydroquinate dehydratase (DHQD), are considered good targets. In this work, a computer-aided drug design strategy, which involved exhaustive virtual screening and molecular dynamics simulations with MM-PBSA analysis, as well as an in silico ADMETox characterization, was performed to find potential noncovalent inhibitors of DHQD from MRSA (SaDHQD). After filtering the 997 million compounds from the ZINC database, 6700 compounds were submitted to an exhaustive virtual screening protocol. From these data, four molecules were selected and characterized (ZINC000005753647 (1), ZINC000001720488 (2), ZINC000082049768 (3), and ZINC000644149506 (4)). The results indicate that the four potential inhibitors interacted with residues important for substrate binding and catalysis, with an estimated binding free energy like that of the enzyme's substrate. Their ADMETox-predicted properties suggest that all of them support the structural characteristics to be considered good candidates. Therefore, the four compounds reported here are excellent option to be considered for future in vitro studies to design new SaDHQD noncovalent inhibitors and contribute to the search for new drugs against MRSA.

5.
Neurosci Lett ; 813: 137413, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37541318

RESUMEN

Uncertainty persists regarding the specific chemical causal factors and their corresponding behavioral effects in anxiety disorders. Commonly employed first-line treatments for anxiety target G protein-coupled receptors (GPCRs), including inhibitors of monoaminergic systems. Alternatively, emerging natural bioactive strategies offer potential for mitigating adverse effects. Recent investigations have implicated adenosine in anxiety-triggering mechanisms, while eritadenine, an adenosine analog derived from Shiitake mushroom, has displayed promising attributes. This study explores eritadenine's potential as a bioactive substance for anxiety disorders in mice, employing behavioral tests, pentobarbital-sleep induction, and molecular docking. Behavioral test results reveal a pronounced anxiolytic and sedative-hypnotic pharmacological effect of eritadenine. Our findings suggest that eritadenine may modulate locomotor functions mediated by adenosine receptors, with a stronger affinity for binding to A2AAR over A1AR, thus eliciting these effects.


Asunto(s)
Trastornos de Ansiedad , Hipnóticos y Sedantes , Ratones , Animales , Simulación del Acoplamiento Molecular , Adenosina
6.
Biomedicines ; 11(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37509509

RESUMEN

Asthma is a condition in which a person's airways become inflamed, narrowed, and produce greater amounts of mucus than normal. It can cause shortness of breath, chest pain, coughing, or wheezing. In some cases, symptoms may be exacerbated. Thus, the current study was designed to determine the mechanism of action of 6-aminoflavone (6-NH2F) in ex vivo experiments, as well as to determine its toxicity in acute and sub-chronic murine models. Tissues were pre-incubated with 6-NH2F, and concentration-response curves to carbachol-induced contraction were constructed. Therefore, tracheal rings pre-treated with glibenclamide, 2-aminopyridine, or isoproterenol were contracted with carbachol (1 µM), then 6-NH2F relaxation curves were obtained. In other sets of experiments, to explore the calcium channel role in the 6-NH2F relaxant action, tissues were contracted with KCl (80 mM), and 6-NH2F was cumulatively added to induce relaxation. On the other hand, tissues were pre-incubated with the test sample, and after that, CaCl2 concentration-response curves were developed. In this context, 6-NH2F induced significant relaxation in ex vivo assays, and the effect showed a non-competitive antagonism pattern. In addition, 6-NH2F significantly relaxed the contraction induced by KCl and CaCl2, suggesting a potential calcium channel blockade, which was corroborated by in silico molecular docking that was used to approximate the mode of interaction with the L-type Ca2+ channel, where 6-NH2F showed lower affinity energy when compared with nifedipine. Finally, toxicological studies revealed that 6-NH2F possesses pharmacological safety, since it did not produce any toxic effect in both acute and sub-acute murine models. In conclusion, 6-aminoflavone exerted significant relaxation through calcium channel blockade, and the compound seems to be safe.

7.
Chem Biol Interact ; 381: 110564, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37224991

RESUMEN

A-esterases are a classical term applied to enzymatic activity of the proteins by a mechanism not involving intermediate covalent phosphorylation, but requiring a divalent cation cofactor. Recently, a copper-dependent A-esterase activity has been identified in goat serum albumin (GSA) on the organophosphorus insecticide trichloronate. This hydrolysis was identified ex vivo with spectrophotometry and chromatography techniques. Albumin mechanism of action and catalytic site as Cu2+-dependent A-esterase are still unknown. Therefore, to know the copper bind to albumin is relevant. N-terminal sequence has been reported as the high affinity site for this cation, due to the histidine in position 3. The aim of this work in silico is to explore how occurs this metallic binding and active the esterase catalytic function. The GSA crystallized structure (PDB: 5ORI) was chosen for molecular docking and dynamics. A site-directed docking, for N-terminal site and a blind docking was done with trichloronate as ligand. Root-mean-square deviation and frequency plot was calculated to find the most frequent predicted structure and visualize the amino acids involved in binding site. The affinity energy in the blind docking (-5.80 kcal/mol) is almost twice lower than site-directed docking (-3.81 kcal/mol) and N-terminal amino acids do not appear in the most repeated structure binding site, suggesting that the protein has a site with higher affinity to the trichloronate ligand. His145 could be involved in the binding site as has been reported in previous studies.


Asunto(s)
Insecticidas , Albúmina Sérica , Animales , Albúmina Sérica/metabolismo , Esterasas/metabolismo , Simulación del Acoplamiento Molecular , Cobre/química , Insecticidas/química , Cabras/metabolismo , Ligandos , Compuestos Organofosforados , Sitios de Unión , Aminoácidos/metabolismo , Unión Proteica
8.
Biochemistry ; 62(5): 1000-1011, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802343

RESUMEN

Light chain amyloidosis is the most common form of systemic amyloidosis. This disease is caused by the formation and deposition of amyloid fibers made from immunoglobulin light chains. Environmental conditions such as pH and temperature can affect protein structure and induce the development of these fibers. Several studies have shed light on the native state, stability, dynamics, and final amyloid state of these proteins; however, the initiation process and the fibril formation pathway remain poorly understood structurally and kinetically. To study this, we analyzed the unfolding and aggregation process of the 6aJL2 protein under acidic conditions, with temperature changes, and upon mutation, using biophysical and computational techniques. Our results suggest that the differences in amyloidogenicity displayed by 6aJL2 under these conditions are caused by traversing different aggregation pathways, including unfolded intermediates and the formation of oligomers.


Asunto(s)
Amiloidosis , Cadenas Ligeras de Inmunoglobulina , Humanos , Cadenas Ligeras de Inmunoglobulina/química , Amiloide/química , Amiloidosis/metabolismo , Proteínas Amiloidogénicas/genética , Mutación
9.
Pathogens ; 12(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36678426

RESUMEN

To understand whether protein Tv-PSP1 from Trichomonas vaginalis recognizes mRNA parasite stem-loop structures, we conducted REMSA and intrinsic fluorescence assays. We found the recombinant Tv-PSP1 structure, determined with X-ray crystallography, showed unusual thermal stability of the quaternary structure, associated with a disulfide bridge CYS76-CYS104. To gain deeper insight into the Tv-PSP1 interaction with mRNA stem-loops (mRNAsl) and its relationship with thermal stability, we also used an integrated computational protocol that combined molecular dynamics simulations, docking assays, and binding energy calculations. Docking models allowed us to determine a putative contact surface interaction region between Tv-PSP1 and mRNAsl. We determined the contributions of these complexes to the binding free energy (ΔGb) in the electrostatic (ΔGelec) and nonelectrostatic (ΔGnon-elec) components using the Adaptive Poisson-Boltzmann Solver (APBS) program. We are the first, to the best of our knowledge, to show the interaction between Tv-PSP1 and the stem-loop structures of mRNA.

10.
Appl Microbiol Biotechnol ; 106(18): 5987-6002, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35951081

RESUMEN

The coronavirus SARS-CoV-2 has caused a pandemic with > 550 millions of cases and > 6 millions of deaths worldwide. Medical management of COVID-19 relies on supportive care as no specific targeted therapies are available yet. Given its devastating effects on the economy and mental health, it is imperative to develop novel antivirals. An ideal candidate will be an agent that blocks the early events of viral attachment and cell entry, thereby preventing viral infection and spread. This work reports functionalized titanium dioxide (TiO2)-based nanoparticles adsorbed with flavonoids that block SARS-CoV-2 entry and fusion. Using molecular docking analysis, two flavonoids were chosen for their specific binding to critical regions of the SARS-CoV-2 spike glycoprotein that interacts with the host cell angiotensin-converting enzyme-2 (ACE-2) receptor. These flavonoids were adsorbed onto TiO2 functionalized nanoparticles (FTNP). This new nanoparticulate compound was assayed in vitro against two different coronaviruses; HCoV 229E and SARS-CoV-2, in both cases a clear antiviral effect was observed. Furthermore, using a reporter-based cell culture model, a potent antiviral activity is demonstrated. The adsorption of flavonoids to functionalized TiO2 nanoparticles induces a ~ threefold increase of that activity. These studies also indicate that FTNP interferes with the SARS-CoV-2 spike, impairing the cell fusion mechanism. KEY POINTS/HIGHLIGHTS: • Unique TiO2 nanoparticles displaying flavonoid showed potent anti-SARS-CoV-2 activity. • The nanoparticles precisely targeting SARS-CoV-2 were quantitatively verified by cell infectivity in vitro. • Flavonoids on nanoparticles impair the interactions between the spike glycoprotein and ACE-2 receptor.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Nanopartículas , Antivirales/química , Antivirales/farmacología , Flavonoides/farmacología , Humanos , Simulación del Acoplamiento Molecular , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Titanio
11.
J Alzheimers Dis ; 87(2): 741-759, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35367963

RESUMEN

BACKGROUND: Amyloid-ß (Aß) fibrils induce cognitive impairment and neuronal loss, leading to onset of Alzheimer's disease (AD). The inhibition of Aß aggregation has been proposed as a therapeutic strategy for AD. Pristine C60 has shown the capacity to interact with the Aß peptide and interfere with fibril formation but induces significant toxic effects in vitro and in vivo. OBJECTIVE: To evaluate the potential of a series of C60 multiadducts to inhibit the Aß fibrillization. METHODS: A series of C60 multiadducts with four to six diethyl malonyl and their corresponding disodium-malonyl substituents were synthesized as individual isomers. Their potential on Aß fibrillization inhibition was evaluated in vitro, in cellulo, and silico. Antioxidant activity, acetylcholinesterase inhibition capacity, and toxicity were assessed in vitro. RESULTS: The multiadducts modulate Aß fibrils formation without inducing cell toxicity, and that the number and polarity of the substituents play a significant role in the adducts efficacy to modulate Aß aggregation. The molecular mechanism of fullerene-Aß interaction and modulation was identified. Furthermore, the fullerene derivatives exhibited antioxidant capacity and reduction of acetylcholinesterase activity. CONCLUSION: Multiadducts of C60 are novel multi-target-directed ligand molecules that could hold considerable promise as the starting point for the development of AD therapies.


Asunto(s)
Enfermedad de Alzheimer , Fulerenos , Acetilcolinesterasa , Enfermedad de Alzheimer/tratamiento farmacológico , Amiloide/química , Péptidos beta-Amiloides , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Fulerenos/farmacología , Humanos , Fragmentos de Péptidos/uso terapéutico
12.
Drug Res (Stuttg) ; 72(1): 53-60, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34662917

RESUMEN

Several 4H-pyran derivatives were designed and synthesized previously as vasorelaxant agents for potential antihypertensive drugs. In this context, the objective of the present investigation was to determine the functional mechanism of vasorelaxant action of 6-amino-3-methyl-4-(2-nitrophenyl)-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile (1: ) and its in vivo antihypertensive effect. Thus, compound 1: showed significant vasorelaxant action on isolated aorta rat rings pre-contracted with serotonin or noradrenaline, and the effect was not endothelium-dependent. Compound 1: induced a significant relaxant effect when aortic rings were contracted with KCl (80 mM), indicating that the main mechanism of action is related to L-type calcium channel blockade. Last was corroborated since compound 1: induced a significant concentration-dependent lowering of contraction provoked by cumulative CaCl2 adding. Moreover, compound 1: was capable to block the contraction induced by FPL 64176, a specific L-type calcium channel agonist, in a concentration-dependent manner. On the other hand, docking studies revealed that compound 1: interacts on two possible sites of the L-type calcium channel and it had better affinity energy (-7.80+/-0.00 kcal/mol on the best poses) than nifedipine (-6.86+/-0.14 kcal/mol). Finally, compound 1: (50 mg/kg) showed significant antihypertensive activity, lowering the systolic and diastolic blood pressure on spontaneously hypertensive rats (SHR) without modifying heart rate.


Asunto(s)
Antihipertensivos , Vasodilatadores , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Calcio/metabolismo , Canales de Calcio , Pirazoles/farmacología , Ratas , Ratas Wistar , Vasodilatadores/farmacología
13.
Molecules ; 26(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34684736

RESUMEN

Podophyllotoxins are natural lignans with known cytotoxic activity on several cell lines. The structural basis for their actions is mainly by the aryltetralin-lignan skeleton. Authors have proposed a cytotoxic mechanism of podophyllotoxins through the topoisomerase-II inhibition activity; however, several studies have also suggested that podophyllotoxins can inhibit the microtubules polymerization. In this work, the two possible mechanisms of action of two previously isolated compounds from the stem bark of Bursera fagaroides var. fagaroides: acetylpodophyllotoxin (1) and 5'-desmethoxydeoxypodophyllotoxin (2), was analyzed. An in vitro anti-tubulin epifluorescence on the MCF10A cell line and enzymatic topoisomerase II assays were performed. The binding affinities of compounds 1 and 2 in the colchicine binding site of tubulin by using rigid- and semiflexible-residues were calculated and compared using in silico docking methods. The two lignans were active by the in vitro anti-tubulin assay but could not inhibit TOP2 activity. In the in silico analysis, the binding modes of compounds into both rigid- and semiflexible-residues of tubulin were predicted, and only for the semiflexible docking method, a linear correlation between the dissociation constant and IC50 previously reported was found. Our results suggest that a simple semiflexible-residues modification in docking methods could provide an in vitro correlation when analyzing very structurally similar compounds.


Asunto(s)
Lignanos/química , Podophyllum/toxicidad , Tubulina (Proteína)/metabolismo , Sitios de Unión , Bursera/metabolismo , Bursera/fisiología , Línea Celular Tumoral , Simulación por Computador , Humanos , Lignanos/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , Podofilotoxina/farmacología , Tubulina (Proteína)/efectos de los fármacos
14.
J Fluoresc ; 31(3): 787-796, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33665743

RESUMEN

The interactions between tetrasulfophthalocyanines and lysozyme were studied using fluorescence spectroscopic and computational analyses. Lysozyme has been found to be widely studied as an anticancer agent, however, there are few reports of its interaction with phthalocyanines. Fe(III) tetrasulfophthalocyanine (FeTSPc) and free base tetrasulfophthalocyanine (TSPc) used in this study, were synthesized by our research group. Experimental results suggested that the metalled complex FeTSPc has a much higher affinity than TSPc. The binding stoichiometry between each tetrasulfophthalocyanine and lysozyme was 1:1. Stern-Volmer analysis suggested that the fluorescence quenching proceedes through a static process. Binding thermodynamics (ΔG, ΔH and ΔS) confirmed that mainly hydrogen bonds, van der Waals, and electrostatic forces are responsible for the binding process. We carried out molecular dynamics simulations, molecular docking, and binding energy calculations. Molecular dynamics simulations yielded the most populated cluster of lysozyme structures, and a representative structure from this cluster was used for the docking studies with these phthalocyanines. 1000 poses were generated for each ligand. The strudtures of the resulting complexes revealed that Arg 73 and Arg 112 are important for the binding affinity of the tetrasulfophthalocyanines, generating mainly an electrostatic favorable environment for the SO3- groups. In addition, hydrophobic contacts were involved with Trp 62, Trp 63 and Trp 108, explaining the fluorescence quenching observed experimentally. Binding energies were determined for these models, confirming that the interactions with lysozyme were more favorable for FeTSPc compared to TSPc. The understanding of the molecular mechanisms is relevant to characterize the nature of tetrasulfophthalocyanines in photodynamic therapy.


Asunto(s)
Complejos de Coordinación/química , Complejos de Coordinación/metabolismo , Hierro/química , Isoindoles/química , Simulación de Dinámica Molecular , Muramidasa/metabolismo , Muramidasa/química , Unión Proteica , Conformación Proteica , Espectrometría de Fluorescencia
15.
J Ethnopharmacol ; 273: 113948, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-33610712

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Achillea millefolium L. (Asteraceae), known as yarrow (milenrama), is a plant used in Mexican traditional medicine for the treatment of hypertension, diabetes, and related diseases. AIM: To determine the vasorelaxant and antihypertensive effect of A. millefollium and to isolate the main bioactive antihypertensive agents. MATERIALS AND METHODS: Organic (hexane, dichloromethane and methanol) and hydro-alcohol (Ethanol-H2O: 70:30) extracts obtained from flowers, leaves and stems were evaluated on isolated aorta rat rings with and without endothelium to determine their vasorelaxant effect. Hexane extract from flowers (HEAmF) was studied to evaluate its antihypertensive effect on spontaneously hypertensive rats (SHR). From HEAmF, bioactive compounds were obtained by bio-guided phytochemical separation through chromatography. RESULTS: Organic extracts showed the best vasorelaxant activity. Hexane extract from flowers was the most potent and efficient ex vivo vasorelaxant agent, showing significant decrease of systolic and diastolic blood pressure in SHR (p < 0.05). Phytochemical separation of HEAmF yielded two epimeric sesquiterpene lactones: leucodin (1) and achillin (2), the major components of the extract. Both 1 and 2 showed similar vasorelaxant action ex vivo (p < 0.05), and their effects where modified by L-NAME (10 µM, nitric oxide synthase inhibitor), by ODQ (1 µM, soluble guanylyl cyclase inhibitor), and also relaxed the contraction induced by KCl (80 mM). Finally, 1 and 2 intragastric administration (50 mg/kg) decreased systolic and diastolic blood pressure in SHR. CONCLUSIONS: Achillea millefolium showed antihypertensive and vasorelaxant effects, due mainly to leucodin and achillin (epimers). Both compounds showed antihypertensive activity by vasorelaxation putatively by endothelium-dependent NO release and cGMP increase, as well as by calcium channels blockade.


Asunto(s)
Achillea/química , Antihipertensivos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Vasodilatadores/farmacología , Animales , Antihipertensivos/uso terapéutico , Aorta/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio/metabolismo , Simulación por Computador , Frecuencia Cardíaca/efectos de los fármacos , Masculino , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/química , Oxadiazoles/farmacología , Extractos Vegetales/uso terapéutico , Quinoxalinas/farmacología , Ratas Endogámicas SHR , Ratas Wistar , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/uso terapéutico , Vasodilatadores/uso terapéutico
16.
Sci Rep ; 9(1): 7009, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31065077

RESUMEN

Protein-engineered biomaterials represent a powerful approach to increase biofunctional activity like tissue repair and celular proliferation. Among these materials, integrins and the development of their specific interactions with plasma-polymerized pyrrole (PPPy) are promising biomaterial for tissue regeneration. In this paper, we studied the molecular recognition in the active site of three integrins (α5ß1, αvß3 and αIIbß3) with PPPy using the structure proposed by Kumar et al. PPPy molecule has three sites to incorporate different species, we worked mainly with the functional groups, -NH2 and -OH groups according to our IR spectroscopic results. We carried out docking studies to find the better conformational couplings and to determine electrostatic (ΔGelec) and non-electrostatic (ΔGnon-elec) contributions to the binding free energy (ΔGb) of these complexes we used Adaptive Poisson-Bolztmann program (APBS). Our results indicated that when incorporating -1H-azirine, -NH2 or -OH group in PPPy structure, interactions with integrins were favorable, as indicated by correspondent ΔGb values. These interactions were mainly triggered by Coulomb interactions, an important term in the electrostatic component. Furthermore, our studies suggest that some residues of integrins α5ß1, αvß3 and αIIbß3 like aspartates are important for the binding to PPPy structures. Detailed interactions between integrin α5ß1 and PPPy structures were revealed by molecular dynamics simulations. We used this particular integrin structure because of its favorable ΔGb as well as its major cellular receptor for the extracellular matrix protein fibronectin. Clustering analysis allowed us to carry out focused docking studies and to determine the time evolution of the ΔGb values. By incorporating -NH2 into PPPy structure, ΔGb values were very favorable during the course of the dynamics simulations by the establishment of hydrogen bonds with Asn224 and/orAsp227 residues, which are part of the integrin α5ß1 pocket. However, for the integrin α5ß1-PPPy-1H-azirine complex and the rest of the functional groups, the ΔGb values were less favorable, although PPPy was found at a distance of less than 5 Å from the active site residues. This work is complementary to the previous studies made employing PPPy nanoparticles for a variety of tissue engineering applications, and were done to enlighten the role played by the amino group of the PPPy in its integrin recognition process.


Asunto(s)
Integrinas/química , Integrinas/metabolismo , Pirroles/química , Pirroles/farmacología , Animales , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Nanopartículas , Regeneración/efectos de los fármacos , Espectrofotometría Infrarroja
17.
Drug Dev Res ; 80(2): 218-229, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30394554

RESUMEN

Previously, we described tracheal rat rings relaxation by several flavonoids, being 6-hydroxyflavone (6-HOF) the most active derivative of the series. Thus, its mechanism of action was determined in an ex vivo tracheal rat ring bioassay. The anti-asthmatic effect was assayed in in vivo OVAlbumin (OVA)-sensitized guinea pigs. Finally, the toxicological profile of 6-HOF was studied based on Organization of Economic Cooperation and Development guidelines with modifications. 6-HOF-induced relaxation appears to be related with receptor-operated calcium channel and voltage-operated calcium channel blockade as the main mechanism of action, and also through the production of relaxant second messengers NO and cGMP. Molecular docking supports that 6-HOF acts as calcium channel blocker and by activation of nitric oxide synthase. In addition, the in vivo anti-asthmatic experiments demonstrate the dose-dependent significant anti-allergic effect of 6-HOF induced by OVA, with best activity at 50 /kg. Finally, toxicological studies determined a LD50 > 2,000 mg/kg and, after 28 day of treatment with 6-HOF (50 mg/kg) by intragastric route, mice did not exhibit evidence of any significant toxicity. In conclusion, experiments showed that 6-HOF exerts significant relaxant activity through calcium channel blockade, and possibly, by NO/cGMP-system stimulation on rat trachea, which interferes with the contraction mechanism of smooth muscle cells in the airways. In addition, the flavonoid shows potential anti-asthmatic properties in an anti-allergic pathway. Furthermore, because the pharmacological and safety evidence, we propose this flavonoid as lead for the development of a novel therapeutic agent for the treatment of asthma and related respiratory diseases.


Asunto(s)
Antiasmáticos/farmacología , Antiasmáticos/uso terapéutico , Asma/tratamiento farmacológico , Flavonoides/farmacología , Flavonoides/uso terapéutico , Tráquea/efectos de los fármacos , Alérgenos/inmunología , Animales , Asma/fisiopatología , Canales de Calcio Tipo L/metabolismo , Cobayas , Técnicas In Vitro , Masculino , Ratones Endogámicos ICR , Simulación del Acoplamiento Molecular , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Ovalbúmina/inmunología , Ratas Wistar , Pruebas de Toxicidad , Tráquea/fisiología
18.
Parasitol Res ; 117(11): 3639-3652, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30191309

RESUMEN

A perchloric acid-soluble protein (PSP), named here tv-psp1, was identified in Trichomonas vaginalis. It is expressed under normal culture conditions according to expressed sequence tag (EST) analysis. On the other hand, Tv-PSP1 protein was identified by mass spectrometry with a 40% of identity to human PSP (p14.1). Polyclonal antibodies against recombinant Tv-PSP1 (rTv-PSP1) recognized a single band at 13.5 kDa in total protein parasite extract by SDS-PAGE and a high molecular weight band analyzed by native PAGE. Structural analysis of Tv-PSP1, using dynamic light scattering, size exclusion chromatography, and circular dichroism spectroscopy, showed a trimeric structure stable at 7 M urea with 38% α-helix and 14% ß-sheet in solution and a molecular weight of 40.5 kD. Tv-PSP1 models were used to perform dynamic simulations over 100 ns suggesting a stable homotrimeric structure. Tv-PSP1 was located in the nucleus, cytoplasm, and hydrogenosomes of T. vaginalis, and the in silico analysis by Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) showed interactions with RNA binding proteins. The preliminary results of RNA degradation analysis with the recombinant Tv-PSP1 showed RNA partial deterioration suggesting a possible putative ribonuclease function.


Asunto(s)
Percloratos/metabolismo , Proteínas Protozoarias/análisis , Proteínas de Unión al ARN/análisis , Ribonucleasas/análisis , Trichomonas vaginalis/metabolismo , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Proteínas de Choque Térmico/genética , Humanos , Ratones , Ratones Endogámicos BALB C , Simulación de Dinámica Molecular , Proteínas Protozoarias/genética , Proteínas de Unión al ARN/genética , Ribonucleasas/genética
19.
Biochim Biophys Acta Proteins Proteom ; 1866(3): 488-495, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29307720

RESUMEN

In this work, we examine the hypothesis about how trapped water molecules at the interface between triosephosphate isomerase (TIM) and either of two phosphorylated inhibitors, 2-phosphoglycolate (2PG) or phosphoglycolohydroxamate (PGH), can explain the anomalous highly negative binding heat capacities (ΔCp,b) of both complexes, TIM-2PG and TIM-PGH. We performed fluorimetric titrations of the enzyme with PGH inhibitor under osmotic stress conditions, using various concentrations of either osmolyte: sucrose, ethylene glycol or glycine betaine. We also analyze the binding processes under various stressor concentrations using a novel calorimetric methodology that allows ΔCp,b determinations in single experiments: Multithermal Titration Calorimetry. The binding constant of the TIM-PGH complex decreased gradually with the concentration of all osmolytes, but at diverse extents depending on the osmolyte nature. According to the osmotic stress theory, this decrease indicates that the number of water molecules associated with the enzyme increases with inhibitor binding, i.e. some solvent molecules became trapped. Additionally, the binding heat capacities became less negative at higher osmolyte concentrations, their final values depending on the osmolyte. These effects were also observed in the TIM-2PG complex using sucrose as stressor. Our results strongly suggest that some water molecules became immobilized when the TIM-inhibitor complexes were formed. A computational analysis of the hydration state of the binding site of TIM in both its free state and its complexed form with 2PG or PGH, based on molecular dynamics (MD) simulations in explicit solvent, showed that the binding site effectively immobilized additional water molecules after binding these inhibitors.


Asunto(s)
Calorimetría/métodos , Ácidos Hidroxámicos/química , Termodinámica , Triosa-Fosfato Isomerasa/química , Agua/química , Fluorometría/métodos , Ácidos Hidroxámicos/metabolismo , Cinética , Ligandos , Simulación de Dinámica Molecular , Ósmosis , Unión Proteica , Conformación Proteica , Triosa-Fosfato Isomerasa/metabolismo , Agua/metabolismo
20.
Biopolymers ; 107(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28509352

RESUMEN

Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants' increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti-aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains.


Asunto(s)
Amiloide/síntesis química , Cadenas lambda de Inmunoglobulina/química , Mutación , Cristalografía por Rayos X , Cadenas lambda de Inmunoglobulina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...